Inferring gene regulatory networks from time series data using the minimum description length principle
نویسندگان
چکیده
منابع مشابه
Inferring gene regulatory networks from time series data using the minimum description length principle
MOTIVATION A central question in reverse engineering of genetic networks consists in determining the dependencies and regulating relationships among genes. This paper addresses the problem of inferring genetic regulatory networks from time-series gene-expression profiles. By adopting a probabilistic modeling framework compatible with the family of models represented by dynamic Bayesian networks...
متن کاملInferring Decision Trees Using the Minimum Description Length Principle
This paper concerns methods for inferring decision trees from examples for classification problems. The reader who is unfamiliar with this problem may wish to consult J. R. Quinlan’s paper (1986), or the excellent monograph by Breiman et al. (1984), although this paper will be self-contained. This work is inspired by Rissanen’s work on the Minimum description length principle (or MDLP for short...
متن کاملUsing the minimum description length principle for global reconstruction of dynamic systems from noisy time series.
An alternative approach to determining embedding dimension when reconstructing dynamic systems from a noisy time series is proposed. The available techniques of determining embedding dimension (the false nearest-neighbor method, calculation of the correlation integral, and others) are known [H. D. I. Abarbanel, (Springer-Verlag, New York, 1997)] to be inefficient, even at a low noise level. The...
متن کاملInferring Informed Clustering Problems with Minimum Description Length Principle
...............................................................................................................................iii Acknowledgements.............................................................................................................. iv Table of
متن کاملMinimum Description Length Principle
The minimum description length (MDL) principle states that one should prefer the model that yields the shortest description of the data when the complexity of the model itself is also accounted for. MDL provides a versatile approach to statistical modeling. It is applicable to model selection and regularization. Modern versions of MDL lead to robust methods that are well suited for choosing an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2006
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btl364